

UTTARAKHAND OPEN UNIVERSITY, HALDWANI (NAINITAL)

MCA-11 3rd YEAR 5th SEMESTER ASSIGNMENT

Last Date of Submission: 15 Jan., 2015

Course Title: Formal Languages and Automata	Course Code: MCA-18
Year: 2014-15 Summer	Maximum Marks: 40

Section 'A' contains 08 short answer type questions of 5 marks each. Learners are required to answers 4 questions only. Answers of short answer-type questions must be restricted to 250 words approximately.

- 1. Prove that $(xy)^{R} = y^{R}x^{R}$, for all x, $y \in \Sigma^{*}$
- 2. Explain the use of finite automata with the help of an example.
- 3. Explain the use of regular expression.
- 4. What is a difference between DFA and NFA?
- 5. Define context free language.
- 6. When do you say that a Turing machine is accepting a string?
- 7. Give formal definition of PDA.
- 8. Construct an NFA equivalent to the regular expression

10+(0+11)0*1

Section 'B' contains 04 long answer-type questions of 10 marks each. Learners are required to answers 02 questions only.

- 1. Explain how we can convert a NFA to DFA.
- 2. Design CFG for the following $(O^{\mathbb{R}})^{\mathbb{R}} \to O^{\mathbb{R}}$
 - a) $\{0^n 1^n n > 0\}$ b) $\{a^n b^{2n} n > 0\}$

3. What is Push Down Automata(PDA)? Explain how context free language is accepted by PDA?

4. Design DFA and NFA to recognize the following set of strings abb, abaa, ab^* , a^*b assuming that $\Sigma = \{a,b\}$